Institutionally Distributed Deep Learning Networks
نویسندگان
چکیده
Deep learning has become a promising approach for automated medical diagnoses. When medical data samples are limited, collaboration among multiple institutions is necessary to achieve high algorithm performance. However, sharing patient data often has limitations due to technical, legal, or ethical concerns. In such cases, sharing a deep learning model is a more attractive alternative. The best method of performing such a task is unclear, however. In this study, we simulate the dissemination of learning deep learning network models across four institutions using various heuristics and compare the results with a deep learning model trained on centrally hosted patient data. The heuristics investigated include ensembling single institution models, single weight transfer, and cyclical weight transfer. We evaluated these approaches for image classification in three independent image collections (retinal fundus photos, mammography, and ImageNet). We find that cyclical weight transfer resulted in a performance (testing accuracy = 77.3%) that was closest to that of centrally hosted patient data (testing accuracy = 78.7%). We also found that there is an improvement in the performance of cyclical weight transfer heuristic with high frequency of weight transfer.
منابع مشابه
Detecting Overlapping Communities in Social Networks using Deep Learning
In network analysis, a community is typically considered of as a group of nodes with a great density of edges among themselves and a low density of edges relative to other network parts. Detecting a community structure is important in any network analysis task, especially for revealing patterns between specified nodes. There is a variety of approaches presented in the literature for overlapping...
متن کاملGlobal Warming: New Frontier of Research Deep Learning- Age of Distributed Green Smart Microgrid
The exponential increase in carbon-dioxide resulting Global Warming would make the planet earth to become inhabitable in many parts of the world with ensuing mass starvation. The rise of digital technology all over the world fundamentally have changed the lives of humans. The emerging technology of the Internet of Things, IoT, machine learning, data mining, biotechnology, biometric, and deep le...
متن کاملSimulate Congestion Prediction in a Wireless Network Using the LSTM Deep Learning Model
Achieved wireless networks since its beginning the prevalent wide due to the increasing wireless devices represented by smart phones and laptop, and the proliferation of networks coincides with the high speed and ease of use of the Internet and enjoy the delivery of various data such as video clips and games. Here's the show the congestion problem arises and represent aim of the research is t...
متن کاملMulticast Routing in Wireless Sensor Networks: A Distributed Reinforcement Learning Approach
Wireless Sensor Networks (WSNs) are consist of independent distributed sensors with storing, processing, sensing and communication capabilities to monitor physical or environmental conditions. There are number of challenges in WSNs because of limitation of battery power, communications, computation and storage space. In the recent years, computational intelligence approaches such as evolutionar...
متن کاملDynamic Obstacle Avoidance by Distributed Algorithm based on Reinforcement Learning (RESEARCH NOTE)
In this paper we focus on the application of reinforcement learning to obstacle avoidance in dynamic Environments in wireless sensor networks. A distributed algorithm based on reinforcement learning is developed for sensor networks to guide mobile robot through the dynamic obstacles. The sensor network models the danger of the area under coverage as obstacles, and has the property of adoption o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1709.05929 شماره
صفحات -
تاریخ انتشار 2017